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Highlights  Abstract  

▪ Study of ribbon blender worm gearbox 

vibration signatures at different condition. 

▪ Usefulness of categorising coalesced i.e. 

combined worm gear and bearing faults in 

enhanced productivity, flexibility and agility. 

▪ Advantages of ANN for defect categorization 

over SVM. 

 There is a demand for worm gearboxes in diversified industrial fields 

that include machinery such as escalators, ribbon blenders, pulverisers, 

bowl mills, etc. because of their peculiar characteristics like torque and 

quick retardation. The most commonly occurring defects in a worm gear 

box are scratches that develop in the worm gear and in bearings. Early 

defect categorization is required to prevent a sudden breakdown that 

would decrease production. The defect is depicted in different cases, 

which include defects in the gear tooth and the outer and inner races of 

the bearing. In another case, the defect is considered in the gear tooth as 

well as the bearing. The severity is designated using the ANN. The 

experiments were performed under these conditions with a good worm 

gearbox to capture vibration response signatures. Using these values as 

an input to the ANN, the model is trained. Experimental results show 

that vibration amplitude increases with fault progression in the worm 

gearbox, and the trained ANN model effectively categorizes worm 

gearbox faults with an accuracy of 97.12%. 

  Keywords 
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combine worm wheel–bearing, defect, vibration, ANN, RMS, skewness. 

1. Introduction 

Catastrophic failure of rotating machinery can results in 

decreased product quality, increased unexpected maintenance 

cost, and health hazards for workers. The gearbox's predictive 

maintenance or condition-based maintenance improves 

performance, dependability, safety, and productivity while 

reducing maintenance costs and the risk of a machine stopping 

suddenly [1]. Predictive maintenance requires accurate defect 

identification, analysis, categorization, and severity. Various 

preventative maintenance techniques, include vibration 

monitoring, motor current signature monitoring, temperature 

monitoring, and sound monitoring [2-4]. Vibration monitoring 

is a more popular technique for locating gearbox faults out of 

these options. There has been little study on using vibration 

monitoring to diagnose coalesced defects in gearboxes [5]. 

Shafts, gears, bearings, casings, keys, and couplings are some 

of the parts that make up a gearbox. Gear and bearings are 
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crucial parts of this component set. When a fault is present in 

many gearbox components, the vibration signature is different 

from that of the fault when it is present in a single gearbox 

component [6]. In case of fault analysis based on vibration 

monitoring, the signals captured by vibration measuring 

instruments are altered by various sources like structure-prone 

vibrations, electromagnetic interference, etc. Therefore, the 

results of vibration monitoring would mislead the exact 

condition of the gearbox [7]. Therefore, the first step in fault 

analysis is to distinguish between the signal generated by the 

genuine component vibration and the contaminated signal. 

Separating gear and bearing vibration signatures from polluted 

vibration signatures needs the denoising technique [8]. The 

denoising technique needs to be used to differentiate 

gearbox vibration signatures from polluted vibration signatures 

[9]. To de-noise the polluted vibration signatures, a variety of 

de-noising algorithms were used, including residual 

Convolution Neural Networks (ResNet) [10], wavelet threshold 

(WT) denoising [11], correlation analysis (CA), variational 

mode decomposition (VMD) [12] and the wavelet transform as 

a basis, denoising [13]. When the characteristic rotational 

frequency, such as gear mesh frequency or shaft rotational 

frequency, is less than 100 Hz, the wavelet denoising technique 

by Mishra et al. [14] is appropriate. Turbines, aeroplanes, 

presses, mines, rolling mills, blending machines, machine tools, 

conveyors, and escalators all use worm gearboxes as essential 

parts. At various loads and speeds, the worm gearbox's worm 

wheel and bearings developed defects such as tooth fracture, 

corrosion, scratches, and small holes. Early identification and 

categorization of worm gearbox problems are necessary to 

prevent a sudden breakdown, harm to people, loss of 

manufacturing, and financial loss [15]. Because the worm gear 

material is often softer than the worm screw's, it wears down or 

gets pitted when sliding in a worm gearbox. [16]. Babu et al. 

[17] used temperature response to track the state of a worm 

gearbox under different loads, speeds, and oil levels. The result 

shows that temperature increases with the deterioration of the 

worm wheel condition. In the case of a single-start worm gear, 

oil depth and oil temperature influence churning power loss [18]. 

It is alarming that the worm gearbox's worm gear has failed. 

Due to the complexity of acquiring the worm gearbox's 

vibration signature, very few studies have been conducted on 

the defect diagnosis of worm gearboxes using vibration 

monitoring [19]. The health of the lubricated worm gear can be 

monitored by employing vibration and sound measurements, 

and runtime defects can be diagnosed [20]. Vibration analysis-

based pitting fault diagnostics of worm gearboxes are covered 

by Elasha et al. [21]. The assortment of faults is a crucial 

segment in the diagnosis of machine health condition 

monitoring. Recent techniques like ANN, CNN, and support 

vector machines can be of immense help. It is found reported 

that back propagation multilayer perceptron approach has been 

implemented and it found that it has given a fair accuracy. This 

method was found suitable to identify the pitting faults and their 

severity [22]. The ANN method is applicable to a number of 

tasks, including categorisation, seriousness, speed recognition, 

picture identification, and the approximation of random 

functions [23]. The final result demonstrates that the suggested 

ANN accurately categorises pitting fault severity. ANN was 

employed by Barshikar et al. [24] to examine vibration response 

and find worm gearbox defects. As a result, 92.2% of defects 

are correctly identified by the ANN model.  Agrawal et al. [25] 

utilized the approaches of ANN and SVM. They focused on the 

identification and categorization of faults in rolling element 

bearings. This method reported fair accuracy in the range of 98% 

to 100%. [26]. Karpat et al. [26] implemented a conventional 

neural network (CNN) to distinguish rolling element bearing 

defects in wind turbines. According to Niaki et al. [27], feed-

forward artificial neural networks (FANN) can satisfactorily 

and reliably predict the current condition of helical gearboxes. 

Similarly, Kane et al. [28] investigated the utility of ANN for 

fault identification and categorization in spur gear, and various 

faults were introduced in the gear tooth geometry. For this 

analysis, he used acoustics, vibration, and psycho-acoustic 

signals. Attoui et al. [29] analysed the vibrations associated with 

faults occurring in the outer, ball, and inner races at various 

rotational frequencies (28.83, 29.16, 29.6, and 30 Hz). On  

a parallel line, for conducting fault detection experimental trials, 

plenty of things are needed in the laboratory, which include 

artificial defect size, speed variation, and load. The ANN model 

for fault diagnosis of various industrial rotating machinery was 

found to be effective and suitable. Recent studies use response 

surface methodology (RSM) and design of experiments (DOE) 

to create experimental trials and assess vibration signature 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 2, 2024 

 

responses for defect identification in bearings and gears. 

Ammar et al. [31] developed the technique to prognosticate the 

working life of bearings using a laboratory experimental test rig. 

The developed technique is based on vibration signals, auto-

regressive moving average (ARMA), and response surface 

methodology (RSM). Mishra et al. [32] focused on defect 

investigation of rotor-bearing assemblies utilising vibration 

monitoring in conjunction with statistical analysis. Statistical 

analysis is based on three-level full factorial design and 

response surface methodology. The measured vibration data 

was effectively and reliably optimized by using RSM ANOVA 

and regression based mathematical model [33-34]. 

During the study and investigation of the worm gearbox, it 

was found that the fault has been considered on one of the parts 

while all the remaining parts were intact. It leads to the 

inference that there is scope for study by considering two faults 

in different parts at a time.  

In the current research, a feed forward back propagation 

ANN model has been proposed for categorising coalesced, i.e., 

combined worm gear and bearing faults. The research is unique 

in that it presents coalesced worm wheel-bearing fault analysis. 

By employing a wire electrical discharge machining and  

a bench machine, defects were intentionally produced in the 

worm gear bearing's outer race, inner race, and worm gear tooth, 

respectively. Implementing an FFT analyzer, vibration 

signatures for various fault states were recorded. To train the 

ANN model, eight statistical parameters were recovered. To 

categorise defects and severity of worm gear and bearing, 

Matlab is used to train an ANN model. 

There are three sections in the present research paper: 

method, discussion of the findings, and conclusion. The 

methodology section presents experiments performed by using 

the OR34 FFT analyser to capture the vibration signatures, 

extraction of statistical parameters, and ANN model.  

The outcome of the research and its summary are presented 

in the conclusion section. 

2. Methodology  

This section illustrates, the test rig utilized for experimentation 

and training of the ANN model.  

2.1 Laboratory experimental test rig 

Fig. 1 depicts the block diagram of the experimental setup.

 

Fig. 1. Block diagram of experimental setup. 

 

For the experimental trials, a constant input speed of 2880 RPM 

was applied to the worm gearbox with a gear ratio of 1/15.  

A double-start worm composed of profile-ground steel and 

case-hardened steel, along with a shell-cast ZCuSn12 bronze 

worm wheel with 30 teeth, make up the worm gearbox.  

A variable-frequency drive is utilized to maintain the worm 

gearbox's speed. The rope break dynamometer applies the load 

to the gearbox, and the load cell measures it. In current 

experiments, the RSM Box-Behnken design [24] is 

implemented to design experimental trials for three levels with 
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four variables, as illustrated in Table 1. In the present study, 

artificial defects were created on worm gear and bearing inner 

and outer races, as in [24]. The example of an artificially created 

fault is shown in Figure 2. Figure 3 presents the intact worm 

gear and worm gear bearing. The response of a system in an 

experimental setup is measured in terms of vibrations in the 

frequency domain. Vibration response correlates with the 

rotating element frequencies, such as gear mesh frequency, 

outer race bearing pass frequency, and inner race bearing pass 

frequency, which are excellent indicators of gearbox defect 

existence [4, 19] when used in the diagnosis of gearbox faults. 

Worm gear gear mesh frequency, outer race worm gear bearing 

pass frequency, and inner race worm gear bearing pass 

frequency, as determined in [24], are all equal to 96 Hz, 15.85 

Hz, and 22.54 Hz, respectively.

 

Fig. 2. Defects in (a) worm gear (b) bearing inner race (c) bearing outer race  

(d) bearing inner and outer race. 

 

Fig. 3. Good condition (a) worm gear bearing (b) worm gear. 
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                                      (c)                                                                                 (d) 
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Table 1. Variables and their values reported in [24].  

Notation Independent parameters Initial value 
Intermediate 

value 
Final value 

IR Bearing inner race faulty 0 0.4 mm 0.8 mm 

OR Bearing outer race faulty 0 0.4 mm 0.8 mm 

WW Worm gear tooth breakage 0 8 mm 16 mm 

LOAD Load applied 10 Kg 15 Kg 20 Kg 

2.2. Vibration signature collection with the OR 34 FFT 

analyzer  

The experiments were performed for intact and twenty-seven 

fault conditions in a gearbox. The vibration response of the 

system during the experiments was recorded using 4 input FFT 

analyser and one directional accelerometer. According to 

Umutu et al. [22], in current experiments, the accelerometer is 

positioned radially, as illustrated in Fig. 4, for better results.  

 

Fig. 4. Accelerometer position.  

The OR 34 FFT analyzer is compatible with the NVGate 

V10.00 software [24]. Based on the available literature, for slow 

rotational speeds and characteristic rotational frequencies less 

than 100 Hz, the wavelet denoise method based on the 

biorthogonal sigmoid thresholding algorithm [14, 24] is 

implemented to reconstruct contaminated vibration signatures, 

which may include other components’ vibration and noise. 

NVGate V10.00 software is utilized to perform wavelet 

denoising. The vibration responses are recorded in the 

frequency window are corrected by implementing the denoised 

technique, which leads to the extraction of eight crucial 

statistical indicators, including standard deviation, variance, 

skewness, peak to peak, kurtosis, RMS, mean, and crest factor 

[19, 24]. The OR34 FFT analyzer NVGate software 

immediately provides RMS statistical parameter values. The 

Excel data analysis tool calculates the remaining statistical 

parameters. The trained ANN model receives these parameters 

as input. The combined worm wheel and bearing defect is 

located and categorised by the ANN model. 

2.3. Technique of artificial neural network  

Conceptually, an artificial neural network mimics the human 

brain to provide solutions to complex situations and challenging 

problems. The link between the input-output parameters and the 

training procedure is the foundation of ANN. Multilayer 

perceptron with feed-forward and backward propagation is, 

compared to other ANN algorithms, ANN is more widely used 

[22-25]. Therefore, it has been employed in this study to classify 

the worm gearbox defects that are present. The figure 5 shows 

the ANN for the feed forward back propagation multilayer 

perceptron. There are three layers, which include the initial, 

intermediate, and final layer.  Eight nodes make up the input 

layer since the ANN model is trained using eight frequency 

domain statistical parameters, and eight to twelve nodes make 

up the hidden layer. There are four classification nodes used for 

fault classification in the output layer. Their output target values 

are with the range of 0 to 1. 

 

Fig. 5. Structure used in technique of artificial neural network. 

Table 2 shows the algorithms employed in this study to 

.  

Accelerometer 
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develop an effective ANN model for present experiments [24]. 

While employing the technique of neural network, the model 

was trained using the toolbox in MATLAB. The initial weights 

and biases of ANNs are determined at random. There were 336 

inputs utilized for the ANN model. Training, testing, and 

validation are the three categories into which the ANN model is 

divided.  Out of the total data, 70% was used for training while 

testing and validation, each was done using 15% of the data [22, 

24-25]. After training ANN model; their performance are check. 

Performance of trained ANN model is based on mean square 

error (MSE) and regression R value. MSE is the average square 

difference between output and target. Lower MSE value is better. 

Regression R value is measure the correlation between output 

and target. When R value is near to 1 means close relationship. 

On the other hand R value is equal to 0 means random 

relationship. 

Table 2. Various ANN algorithms for classifying faults. 

Initial layer 
Intermediate 

layer 
Final layer Architecture 

8 

 

8 

4 

 

Bayesian 

architecture  (trainbr) 
10 

12 

8 
Scaled conjugate gradient 

architecture (trainscg) 
10 

12 

8 
Levenberg- Marquardt 

architecture (trainlm) 
10 

12 

3. Discussion of the Findings 

3.1. Identification potential of de-noised vibration 

amplitude 

The experiments were performed, and the vibration signatures 

were captured and denoised for various working conditions, as 

mentioned in Table 2. These include the response of an intact 

gearbox to various faults, as shown in figures 6 -18. The 

condition of the gearbox was analyzed by comparing the 

denoised signal of intact and faulty conditions. These responses 

were considered at the gear mesh frequency of the worm gear 

and the pass frequency at the outer and inner races. The loading 

conditions during the experiments were 10 Kg, 15 Kg, and 20 

Kg, respectively. Figure 6 shows healthy worm gearbox 

vibration signatures for 10 Kg, 15 Kg, and 20 Kg, respectively. 

Even though the worm gearbox is brand new, it shows some 

vibration response corresponding to the gear mesh frequency. 

Figure 7 (a) and (b) show that, even though the defect was on 

the bearing outer race, there is a slight increase in the vibration 

response that corresponds to the gear mesh frequency of the 

worm wheel. Conversely, when the defect is on the bearing 

inner race, there is a significant increase in the vibration 

response that corresponds to the gear mesh frequency of the 

worm wheel. Figure 7 (c) shows that effect of faulty worm 

wheel on bearing outer race and bearing inner race. When defect 

occurs on worm wheel teeth, there is slight increase in vibration 

amplitude of bearing corresponding to outer race elements pass 

frequency, inner race elements pass frequency.

 

Fig. 6. Denoised frequency domain vibration response of a good worm gearbox (with an output speed of 192 rpm). 

  

 

𝑓𝑔𝑚  

𝑓𝑔𝑚  

𝑓𝑔𝑚  
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Fig. 7. Denoised frequency domain vibration response of FT1, FT2 and FT3 (with an output speed of 192 rpm).

The vibration signature for fault types FT4, FT5, and FT6 is 

displayed in Figures 8 and 9. As the load increases from 10 kg 

to 20 kg, as seen in Figure 8(a) and (b), the vibration amplitude 

increases.  Similar patterns also show in figure 9 that when  

a bearing outer race and inner race fault together, the vibration 

amplitude increases significantly and is correlated with the 

worm wheel's gear mesh frequency. As shown in figures 10 to 

11, when a worm wheel and bearing outer race are both faulty, 

the amplitude of the worm wheel vibration rises as the bearing 

outer race defect gets more severe. When a worm wheel and 

bearing inner race are both defective, an identical pattern is seen, 

as shown in figures 12 to 13. Figure 14 to Figure 18 show 

vibration signature for coalesced faults type FT13 to FT19. 

Similar pattern is observed that worm wheel vibration 

amplitude increasers more and vibration amplitude changes 

with load. It has been observed that the vibration response of  

a faulty worm gearbox increases as the load increases. While 

the same vibrational behaviour is not recorded for the fault on 

bearing outer race. It is noticed that vibration levels increase 

significantly at the worm gear, corresponding to the mesh 

frequency when there is a fault in the inner race. [22].

 

Fig. 8. Denoised frequency domain vibration response of FT4 (with an output speed of 192 rpm). 

 

Fig. 9. Denoised frequency domain vibration response of FT5 & FT6 (with an output speed of 192 rpm). 
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Fig. 10. Denoised frequency domain vibration response of FT7 (with output speed =192 rpm). 

 

Fig. 11. Denoised frequency domain vibration response of FT8, FT9 (with an output speed of 192 rpm). 

 

Fig. 12. Denoised frequency domain vibration response of FT10 (with an output speed of 192 rpm). 

 

Fig. 13. Denoised frequency domain vibration response of FT11, FT12 (with an output speed of 192 rpm). 
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Fig. 14. Denoised frequency domain vibration response of FT13 (with an output speed of 192 rpm). 

 

Fig. 15. Denoised frequency domain vibration response of FT14 (with an output speed of 192 rpm). 

 

Fig. 16. Denoised frequency domain vibration response of FT15, FT16 (with an output speed of 192 rpm). 

 

Fig. 17. Denoised frequency domain vibration response of FT17 (with an output speed of 192 rpm). 
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Fig. 18. Denoised frequency domain vibration response of FT18, FT19 (with an output speed of 192 rpm).

3.2 Significance from experimentation 

The crucial inference that can be drawn, as depicted in Fig.19, 

is that the amplitude of vibration in the case of a worm gear 

increases abruptly with increased fault severity and load. Hence, 

the vibrations in the worm gear play a predominant role, and it 

becomes necessary to monitor the vibration levels of the worm 

wheel. It shows a negligible increase in the amplitude of 

vibration in the case of worm wheel bearings with greater 

stiffness. 

 

Fig. 19. Comparison of amplitude of vibration acquired from 

the experiments. 

3.3. Performance of trained ANN 

In the present work, categorisation of various faults in the worm 

gearbox is done by using the feed-forward-back propagation 

multilayer perceptron model. It works on Bayesian, scaled 

conjugate gradient, and Levenberg-Marquardt architectures. 

3.3.1 Training of ANN depends on Bayesian architecture   

The figure 20 shows the best training performance of the ANN 

depends on Bayesian architecture with (a) 8 hidden layers, (b) 

10 hidden layers, and (c) 12 hidden layers for 

defect categorization. For 8, 10, and 12 hidden layer training, 

the ANN model stops after 631, 118, and 837 epochs, 

respectively, and the corresponding MSEs are 0.013679, 

0.014594, and 1.3153e-13, respectively. 

 

(a) 

 

(b) 

       

(a)                                                                    (b) 

𝑓𝑔𝑚  

𝑓𝐵𝑃𝐼𝐹  

𝑓𝐵𝑃𝑂𝐹  𝑓𝐵𝑃𝑂𝐹  

𝑓𝑔𝑚  

𝑓𝐵𝑃𝐼𝐹  



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 2, 2024 

 

 

(c) 

Fig. 20. Best training performance of ANN depends on 

Bayesian architecture with (a) 8 hidden layer (b) 10 hidden 

layer (c) 12 hidden layer for defect categorization. 

3.3.2. Training of ANN depends on scaled conjugate 

gradient architecture 

The figure 21 shows the best training performance of ANN 

depends on a scaled conjugate gradient architecture with (a) 8 

hidden layers, (b) 10 hidden layers and (c) 12 hidden layers for 

defect categorization.  For 8, 10, and 12, the hidden layer 

training of the ANN model stops after 11, 13, and 31 epochs, 

respectively, and the corresponding MSEs are 0.097435, 

0.026755, and 0.15266, respectively 

 

.

 

Fig. 21. Best training performance of ANN depends on scaled conjugate gradient architecture with (a) 8 hidden layer (b) 10 hidden 

layer (c) 12 hidden layer for defect categorization.

  

(a)                                                                 (b) 

 

(c) 
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3.3.3. Training of ANN depends on Levenberg-Marquardt 

architecture  

The figure 22 shows the best training performance of ANN 

depends on Levenberg-Marquardt architecture with (a) 8 hidden 

layers, (b) 10 hidden layers and (c) 12 hidden layers for 

defect categorization. For 8, 10, and 12 hidden layer training, 

the ANN model stops after 3, 4, and 2 epoch, respectively, and 

the corresponding MSEs are 0.13921, 0.05132, and 0.18332, 

respectively.

 

Fig. 22. Best training performance of ANN depends on Levenberg- Marquardt architecture with (a) 8 hidden layer (b) 10 hidden 

layer (c) 12 hidden layer for defect categorization.

A summary of the best training performance of the ANN 

model depends on Bayesian, scaled conjugate gradient, and 

Levenberg- Marquardt architectures, as mentioned in Table 3. It 

was found that validation data accuracy for Bayesian 

architecture with 8, 10, and 12 intermediate layers is zero, 

respectively. On the other hand, it was below 90% for the 

Levenberg-Marquardt architecture with 8, 10, and 12 

intermediate layers, respectively. But in the case of Scaled 

conjugate gradient architecture validation, the data accuracy for 

8 and 12 intermediate layers was below 90%, and for 10 

intermediate layers, it was 94.09%, which is closer to 100% in 

conjunction with a mean square error (MSE) of 0.02675 at 13 

  

(a)                                                                 (b) 

 

(c) 
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epochs, which shows a close relationship between output and 

target. Therefore, the performance of the scaled conjugate 

gradient architecture with 10 hidden layers outperforms that of 

the Bayesian and Levenberg- Marquardt architectures. In order 

to categorise worm gearbox defects, an ANN model depends on 

the scaled conjugate gradient architecture is implemented.

Table 3. Performance of several train ANN models for defect categorization. 

Architecture 

implemented 

Intermediate 

layer 
Epochs Mean square error 

Training data 

 

Testing data 

accuracy in 

(%) 

Validation data 

accuracy in 

(%) 

Bayesian 

8 631 0.01367 97.04 94.20 0 

10 118 0.01459 96.87 99.26 0 

12 837 1.3153e-13 100 41.82 0 

Scaled conjugate 

gradient 

8 11 0.09743 90.54 92.82 78.45 

10 13 0.02675 89.52 99.12 94.09 

12 31 0.1526 95.75 93.62 64.75 

Levenberg- 

Marquardt 

8 3 0.1392 92.33 94.77 74.83 

10 4 0.05132 94.78 85.76 88.88 

12 2 0.1833 92.29 94.85 61.62 

3.4. Prediction potential of ANN 

Categorising worm gearbox defects using ANN basically 

depends on the confusion matrix. The confusion matrix includes 

output and target. In current research, an ANN model that 

depends on scaled conjugate gradient architecture was trained 

for categorising worm gearbox defects. To achieve solidity in 

defect categorisation, the scaled conjugate gradient architecture 

was trained five times. To categorise worm gearbox defects, 

four outputs are considered: a good worm gearbox, a defect on 

the inner and outer race, a broken tooth, and an integrated fault 

on the worm gear and bearing in conjunction with the target: 

(1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1), respectively. The 

confusion matrix consists of four matrix, such as training, 

testing, validation, and the overall confusion matrix. Out of the 

total data, the training confusion matrix categorises 70% of the 

data, and the testing and validation confusion matrix categorises 

15% of the data. On the other hand, overall confusion matrix 

categorises 100% of the data. 

Table 4 indicates the effectiveness of the scaled conjugate 

gradient architecture ANN model for defect categorisation with 

10 hidden layers. The accuracy given by the overall confusion 

matrix for defect categorization was 97.6%, 100%, 95.2%, 

95.2%, and 97.6%. Similarly, the cross-entropy recorded was 

0.0091, 3.2221e-09, 0.004228, 2.0311e-06, and 9.8661e-07. 

These values are somewhat different.  The obtained results 

demonstrate that for the second trial, the ANN model, which 

depends on the scaled conjugate gradient with 10 hidden layers, 

provides high solidity and reliability for categorising worm 

gearbox defects. The confusion matrix and best validation 

performance from the second experiment are displayed in 

Figs. 23 and 24, respectively. 

Table 4. Effectiveness of scaled conjugate gradient architecture ANN model for defects categorisation with 10 hidden layer. 

Trial No. Epochs Cross entropy 
Accuracy on training 

confusion matrix (%) 

Accuracy on testing 

confusion matrix (%) 

Accuracy on validation 

confusion matrix (%) 

Accuracy on all 

confusion matrix (%) 

1 17 0.0091 96.7 100 100 97.6 

2 30 3.2221e-09 100 100 100 100 

3 10 0.004228 96.7 83.3 100 95.2 

4 48 2.0311e-06 100 66.7 100 95.2 

5 37 9.8661e-07 100 83.3 100 97.6 
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Fig. 23. Optimal testing outcomes for the second trial. 

 

Fig. 24. The second trial, a confusion matrix. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 2, 2024 

 

3.5. Comparison and discussion with some earlier published works 

Table 5. Comparison of the current findings with earlier worm gearbox studies. 

Published 

work 

Methods for 

monitoring 
DOE considered Statistician-extracted features Defect considered 

Coalesce defect 

considered 

[17] Temperature No No 
Broken of a single worm wheel 

teeth 
NO 

[20] Acoustic emission No RMS, kurtosis 
Teeth of a single worm wheel 

encountered pitting 
NO 

[21] Vibration No RMS 
Defective inner and outer wheel 

bearing races 
NO 

[22] Vibration No 
Mean, Median, RMS, standard 

deviation , peak to peak, crest 

factor, skewness and kurtosis 

The teeth of several worm gears 

were pitted 
NO 

Current 

work 
Vibration Yes 

The sample variance, RMS, 

crest factor, kurtosis, mean, 

peak to peak, skewness, and 

standard deviation 

Teeth breakage in the worm 

wheel, scratch on the inner and 

outer races of the bearings, and 

the combination of all three 

Yes 

Table 5 illustrates a comparison of current research with the 

worm gearbox literature that has been published.  Vibration 

monitoring is used to evaluate the coalesced, or combined, 

worm wheel and bearing defect, but no work has been found to 

be reported on this matter. Similarly, none of the published work 

is found with the implementation of DOE to plan systematic 

experimental trials. The primary benefit of the current study is 

that it offers an experimental examination together with  

a practical technique for defect identification in worm 

gearboxes with coalesced faults. Thermal analysis would 

successfully identify a single broken worm wheel tooth without 

extracting statistical data, according to Babu et al. [17].  

The pitting problems on the worm wheel can be prominently 

identified by acoustic emission based RMS and kurtosis, as per 

the findings of Elforjani et al. [20]. Elasha et al. [21] found that 

the vibration based RMS response can be useful for fault 

detection in worm wheel and bearing races. As per the findings 

of Umutu et al. [22], the diagnosis of pitting on a worm wheel 

using ANN improves with the extraction of statistical 

parameters. The present work utilized an ANN model based on 

a scaled conjugate gradient architecture for fault categorization. 

The results show that the present model, which depends on  

a scaled conjugate gradient, is capable of making the predictions 

with fair accuracy. 

3.6. Comparison of ANN model with support vector 

machine (SVM) 

The SVM model is developed using various ribbon blender 

worm gearbox conditions (see Table 2) and eight frequency 

domain vibration response statistical parameters: standard 

deviation, variance, skewness, peak to peak, kurtosis, RMS, 

mean, and crest factor. From the available literature, John Platt’s 

sequential algorithm is implemented for training SVM [4, 23]. 

The SVM model is trained utilising the MATLAB classifier 

toolbox. 8-fold cross-validation is implemented to produce 

training data for SVM model development. The complexity 

parameter is set to 100. A linear kernel function is used for 

analysis. Fig. 25 shows the confusion matrix for the trained 

SVM. Fig. 25 (a) and (b) are useful to observe the accuracy of 

the pre-true class, i.e, training class and the pre-predicted class, 

i.e, the testing class. The SVM model's overall accuracy is 

depicted in Fig. 25(c). The trained SVM model has an overall 

accuracy of 92.9% and a 7.1% overall error. Based on overall 

accuracy, the ANN model is compared with the SVM model, as 

mentioned in Table 6.  

Table 6. Comparison of ANN with SVM.  

Machine learning 

tool 
Over all accuracy Over all error 

ANN 97.12 % 1.02 % 

SVM 92.9 % 7.1 % 
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(a) Pre true confusion matrix 

 

(b) Pre predicted confusion matrix 

 

(c) Over all confusion matrix 

Fig. 25. Confusion matrix for the SVM model. 

4. Conclusions 

This work presents a technique for coalescing defect, i.e., the 

effect of defects at a time in the worm wheel, bearing inner race 

and outer race categorization in the worm gear box. The 

experimental trials were performed to acquire vibration 

signatures. The wavelet denoising method is implemented to 

reconstruct the contaminated vibration signatures. The 

statistical parameters like standard deviation, variance, 

skewness, peak to peak, kurtosis, RMS, mean, and crest factor 

are influential and captured during the experiments. Further, it 

proposes the use of ANN and SVM. Using the captured data, 

the models of ANN and SVM are trained, which further 

categorizes the defects. Based on the inferences drawn from the 

study, subsequent conclusions have been drawn: 

1) To identify faults present in the worm gearbox by using 

vibration signatures, characteristics rotational frequencies, 

those are gear mesh frequency (𝑓𝑔𝑚) , bearing pass outer 

race frequency ( 𝑓𝐵𝑃𝑂𝐹), bearing pass inner race frequency 

(𝑓𝐵𝑃𝐼𝐹) , which are strong predictors of worm wheel and 

bearing faults. 

2) The performance of the gearbox deteriorates with the 

presence of the defect. The defect on the inner bearing race 

prominently rises the vibration level as compared to the 

defect on the outer race. Hence, the bearing inner race 

defect is predominant as compared to the bearing outer race. 

3)  The defect categorization can be done with the scaled 

conjugate gradient architecture in ANN and John Platt’s 

sequential architecture in SVM. Based on overall accuracy, 

the ANN model is superior to SVM in classifying worm 

gearbox defects.  

4) The study's findings suggest that the technique was sound, 

successfully increased productivity, dependability, and 

efficiency, and reduced maintenance costs.  
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